64 research outputs found

    Influence of fluctuating supply on the emplacement dynamics of channelized lava flows

    Get PDF
    The evolution of lava flows emplaced on Mount Etna (Italy) in September 2004 is examined in detail through the analysis ofmorphometricmeasurements of flow units. The growth of the main channelized flow is consistent with a layering of lava blankets, which maintains the initial geometry of the channel (although levees are widened and raised), and is here explicitly related to the repeated overflow of lava pulses. A simple analytical model is introduced describing the evolution of the flow level in a channelized flow unit fed by a fluctuating supply. The model, named FLOWPULSE, shows that a fluctuation in the velocity of lava extrusion at the vent triggers the formation of pulses, which become increasingly high the farther they are from the vent, and are invariably destined to overflow within a given distance. The FLOWPULSE simulations are in accordance with the observed morphology, characterized by a very flat initial profile followed by a massive increase in flow unit cross-section area between 600 and 700 m downflow. The modeled emplacement dynamics provides also an explanation for the observed substantial “loss” of the original flowing mass with increasing distance from the vent

    Uncertainty quantification and sensitivity analysis of volcanic columns models: results from the integral model PLUME-MoM

    Get PDF
    The behavior of plumes associated with explosive volcanic eruptions is complex and dependent on eruptive source parameters (e.g. exit velocity, gas fraction, temperature and grain-size distribution). It is also well known that the atmospheric environment interacts with volcanic plumes produced by explosive eruptions in a number of ways. The wind field can bend the plume but also affect atmospheric air entrainment into the column, enhancing its buoyancy and in some cases, preventing column collapse. In recent years, several numerical simulation tools and observational systems have investigated the action of eruption parameters and wind field on volcanic column height and column trajectory, revealing an important influence of these variables on plume behavior. In this study, we assess these dependencies using the integral model PLUME-MoM, whereby the continuous polydispersity of pyroclastic particles is described using a quadrature-based moment method, an innovative approach in volcanology well-suited for the description of the multiphase nature of magmatic mixtures. Application of formalized uncertainty quantification and sensitivity analysis techniques enables statistical exploration of the model, providing information on the extent to which uncertainty in the input or model parameters propagates to model output uncertainty. In particular, in the framework of the IAVCEI Commission on tephra hazard modeling inter-comparison study, PLUME-MoM is used to investigate the parameters exerting a major control on plume height, applying it to a weak plume scenario based on 26 January 2011 Shinmoe-dake eruptive conditions and a strong plume scenario based on the climatic phase of the 15 June 1991 Pinatubo eruption

    Insights into the formation and dynamics of coignimbrite plumes from one-dimensional models

    Get PDF
    Coignimbrite plumes provide a common and effective mechanism by which large volumes of fine-grained ash are injected into the atmosphere. Nevertheless, controls on formation of these plumes as a function of eruptive conditions are still poorly constrained. Herein, two 1-D axysymmetric steady state models were coupled, the first describing the parent pyroclastic density current and the second describing plume rise. Global sensitivity analysis is applied to investigate controls on coignimbrite plume formation and describe coignimbrite source and the maximum plume height attained. For a range of initial mass flow rates between 108 and 1010 kg/s, modeled liftoff distance (the distance at which neutral buoyancy is attained), assuming radial supercritical flow, is controlled by the initial flow radius, gas mass fraction, flow thickness, and temperature. The predicted decrease in median grain size between flow initiation and plume liftoff is negligible. Calculated initial plume vertical velocities, assuming uniform liftoff velocity over the pyroclastic density current invasion area, are much greater (several tens of m/s) than those previously used in modeling coignimbrite plumes (1 m/s). Such velocities are inconsistent with the fine grain size of particles lofted into coignimbrite plumes, highlighting an unavailability of large clasts, possibly due to particle segregation within the flow, prior to plume formation. Source radius and initial vertical velocity have the largest effect on maximum plume height, closely followed by initial temperature. Modeled plume heights are between 25 and 47 km, comparable with Plinian eruption columns, highlighting the potential of such events for distributing fine-grained ash over significant areas

    Evolution of Conduit Geometry and Eruptive Parameters During Effusive Events

    Get PDF
    The dynamics of effusive events is controlled by the interplay between conduit geometry and source conditions. Dyke-like geometries have been traditionally assumed for describing conduits during effusive eruptions, but their depth-dependent and temporal modifications are largely unknown. We present a novel model which describes the evolution of conduit geometry during effusive eruptions by using a quasi steady state approach based on a 1-D conduit model and appropriate criteria for describing fluid shear stress and elastic deformation. This approach provides time-dependent trends for effusion rate, conduit geometry, exit velocity, and gas flow. Fluid shear stress leads to upward widening conduits, whereas elastic deformation becomes relevant only during final phases of effusive eruptions. Simulations can reproduce different trends of effusion rate, showing the effect of magma source conditions and country rock properties on the eruptive dynamics. This model can be potentially applied for data inversion in order to study specific case studies

    Effusion Rate Evolution During Small-Volume Basaltic Eruptions: Insights From Numerical Modeling

    Get PDF
    The temporal evolution of effusion rate is the main controlling factor of lava spreading and emplacement conditions. Therefore, it represents the most relevant parameter for characterizing the dynamics of effusive eruptions and thus for assessing the volcanic hazard associated with this type of volcanism. Since the effusion rate curves can provide important insights into the properties of the magma feeding system, several efforts have been performed for their classification and interpretation. Here, a recently published numerical model is employed for studying the effects of magma source and feeding dike properties on the main characteristics (e.g., duration, erupted mass, and effusion rate trend) of small-volume effusive eruptions, in the absence of syn-eruptive magma injection from deeper storages. We show that the total erupted mass is mainly controlled by magma reservoir conditions (i.e., dimensions and overpressure) prior to the eruption, whereas conduit processes along with reservoir properties can significantly affect mean effusion rate, and thus, they dramatically influence eruption duration. Simulations reproduce a wide variety of effusion rate trends, whose occurrence is controlled by the complex competition between conduit enlargement and overpressure decrease due to magma withdrawal. These effusion rate curves were classified in four groups, which were associated with the different types described in the literature. Results agree with the traditional explanation of effusion rate curves and provide new insights for interpreting them, highlighting the importance of magma reservoir size, initial overpressure, and initial width of the feeding dike in controlling the nature of the resulting effusion rate curve

    Eruption type probability and eruption source parameters at Cotopaxi and Guagua Pichincha volcanoes (Ecuador) with uncertainty quantification

    Get PDF
    Future occurrence of explosive eruptive activity at Cotopaxi and Guagua Pichincha volcanoes, Ecuador, is assessed probabilistically, utilizing expert elicitation. Eight eruption types were considered for each volcano. Type event probabilities were evaluated for the next eruption at each volcano and for at least one of each type within the next 100 years. For each type, we elicited relevant eruption source parameters (duration, average plume height, and total tephra mass). We investigated the robustness of these elicited evaluations by deriving probability uncertainties using three expert scoring methods. For Cotopaxi, we considered both rhyolitic and andesitic magmas. Elicitation findings indicate that the most probable next eruption type is an andesitic hydrovolcanic/ash-emission (~ 26–44% median probability), which has also the highest median probability of recurring over the next 100 years. However, for the next eruption at Cotopaxi, the average joint probabilities for sub-Plinian or Plinian type eruption is of order 30–40%—a significant chance of a violent explosive event. It is inferred that any Cotopaxi rhyolitic eruption could involve a longer duration and greater erupted mass than an andesitic event, likely producing a prolonged emergency. For Guagua Pichincha, future eruption types are expected to be andesitic/dacitic, and a vulcanian event is judged most probable for the next eruption (median probability ~40–55%); this type is expected to be most frequent over the next 100 years, too. However, there is a substantial probability (possibly >40% in average) that the next eruption could be sub-Plinian or Plinian, with all that implies for hazard levels

    MeMoVolc report on classification and dynamics of volcanic explosive eruptions

    Get PDF
    Classifications of volcanic eruptions were first introduced in the early twentieth century mostly based on qualitative observations of eruptive activity, and over time, they have gradually been developed to incorporate more quantitative descriptions of the eruptive products from both deposits and observations of active volcanoes. Progress in physical volcanology, and increased capability in monitoring, measuring and modelling of explosive eruptions, has highlighted shortcomings in the way we classify eruptions and triggered a debate around the need for eruption classification and the advantages and disadvantages of existing classification schemes. Here, we (i) review and assess existing classification schemes, focussing on subaerial eruptions; (ii) summarize the fundamental processes that drive and parameters that characterize explosive volcanism; (iii) identify and prioritize the main research that will improve the understanding, characterization and classification of volcanic eruptions and (iv) provide a roadmap for producing a rational and comprehensive classification scheme. In particular, classification schemes need to be objective-driven and simple enough to permit scientific exchange and promote transfer of knowledge beyond the scientific community. Schemes should be comprehensive and encompass a variety of products, eruptive styles and processes, including for example, lava flows, pyroclastic density currents, gas emissions and cinder cone or caldera formation. Open questions, processes and parameters that need to be addressed and better characterized in order to develop more comprehensive classification schemes and to advance our understanding of volcanic eruptions include conduit processes and dynamics, abrupt transitions in eruption regime, unsteadiness, eruption energy and energy balance
    corecore